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Lattice animals on a staircase and Fibonacci numbers
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F–54506 Vandœuvre lès Nancy Cedex, France

Received 16 November 1999

Abstract. We study the statistics of column-convex lattice animals resulting from the stacking
of squares on a single or double staircase. We obtain exact expressions for the number of animals
with a given length and area, their mean length and their mean height. These objects are closely
related to Fibonacci numbers. On a single staircase, the total number of animals with areak is
given by the Fibonacci numberFk .

1. Introduction

A lattice animal is a cluster of occupied sites on a lattice. In two dimensions, thearea of
an animal is the number of sites belonging the cluster and itsperimeter is defined as the
set of empty first neighbours of occupied sites. Alternatively, instead of the site clusters,
one may consider the corresponding clusters of occupied cells on the dual lattice, also called
polyominoes.

The enumeration of lattice animals according to their area and/or perimeter is a subject of
active research in the statistical physics and combinatorics communities (see [1] for a recent
review). On the physical side, the main interest lies in the close connection between lattice
animals and the percolation problem [2,3].

In the most general case, the counting problem is quite difficult and only some bounds on
the asymptotic behaviour are known [4]. This led to the introduction of restricted classes of
animals (Ferrers graphs, convex and/or directed animals) for which some exact results could
be obtained, mainly in two dimensions (see for example [5–12]).

In this paper, we consider animals resulting from the stacking of squares on a single or
double staircase, i.e. column-convex (or vertically convex) animals, for which the intersection
of a vertical line with the perimeter has at most two connected components. These animals are
closely related to Fibonacci numbers. In the case of a single staircase, the correspondance is
particularly simple: the area-generating function isequalto the Fibonacci number generating
function.

The paper is organized as follows. In section 2, we study the stacking of squares on a single
staircase. We calculate the number of animals with a given length and area, the total number
of animals with a given area, their mean length and mean height and study the asymptotic
behaviours. The same is done in section 3 for animals on a double staircase. The results are
discussed in section 4. Some technical details are given in the appendix.
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Figure 1. Different stackings of five squares on a staircase arranged by number of occupied stairs.

2. Single staircase

In this section we consider column-convex lattice animals resulting from the stacking ofk

squares on a single staircase as shown in figure 1. Two neighbouring columns are connected
when they share at least one edge.

2.1. Number of animals

In order to count the numberFk,l of different animals with areak living on l stairs, we introduce
the generating function

F(z, t) =
∞∑

k,l=1

Fk,lz
kt l . (2.1)

It satisfies the relation

F(z, t) = zt + t
z2

1− z [1 + F(z, t)] (2.2)

where the first term corresponds to a single square, the factorz2/(1− z) in the second term
is the generating function of a column with at least two squares, needed for the animal to
eventually continue its growth on the next stair. Hence we have

F(z, t) = zt

1− z− tz2
= zt

∞∑
n=0

zn(1 + zt)n

=
∞∑
n=0

∑
p

(
n

p

)
zn+p+1tp+1 =

∑
l

∞∑
k=l

(
k − l
l − 1

)
zkt l . (2.3)

By convention, in sums containing binomial coefficients, the range of summation is not
explicitly indicated. It is automatically determined by the nonvanishing values of the binomial
coefficients and, for example, 06 p 6 n in equation (2.3).

The identification of the coefficients ofzkt l in equations (2.1) and (2.3) leads to

Fk,l =
(
k − l
l − 1

)
. (2.4)
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Using the addition/induction relation for the binomial coefficients [13, p 174],(
k − l + 1

l − 1

)
=
(
k − l
l − 1

)
+

(
k − l
l − 2

)
(2.5)

one obtains the recursion relation:

Fk+1,l = Fk,l + Fk−1,l−1. (2.6)

The total number of animals with areak is given by

Fk =
∑
l

(
k − l
l − 1

)
(2.7)

i.e. by thekth Fibonacci number (see [13, p 303]) which satisfies the recursion relation
Fk+1 = Fk + Fk−1 with the initial valuesF0 = 0 andF1 = 1, according to (2.6) and (2.7).

This relation with the Fibonacci numbers† can be deduced directly by settingt = 1 in the
first line of (2.3) which leads to

F(z, 1) = F(z) =
∞∑
k=1

Fkz
k = z

1− z− z2
(2.8)

whereF(z) is the generating function of the Fibonacci numbers.
All the animals built from five squares are shown in figure 1, the different columns

corresponding to the different values ofl.

2.2. Mean length

The mean length of animals with areak is defined as

l(k) =
∑∞

l=1 lFk,l∑∞
l=1Fk,l

= Ak

Fk
Ak =

∑
l

l

(
k − l
l − 1

)
. (2.9)

In order to calculateAk, let us introduce the auxiliary generating function

A(z) =
∞∑
k=1

Akz
k = ∂F (z, t)

∂t

∣∣∣∣
t=1

= F(z) + zF 2(z) = 1− z
z

F 2(z). (2.10)

According to [13, p 354]

F 2(z) =
∞∑
k=2

F
(2)
k zk F

(2)
k =

∑
m+n=k

FnFm = 2kFk+1− (k + 1)Fk
5

(2.11)

hence the coefficients ofA(z) are

Ak = [zk](z−1− 1)F 2(z) = F (2)k+1− F (2)k =
k(2Fk − Fk−1) + 3Fk

5
(2.12)

where we used the recursion relation for the Fibonacci numbers. The symbol [zk]f (z)means
the coefficient ofzk in the seriesf (z). The mean length follows from equations (2.9) and (2.12)
and reads

l(k) = k

5

(
2− Fk−1

Fk

)
+

3

5
. (2.13)

† A similar connection between the number of column-convexdirectedanimals with areak and the Fibonacci numbers
with odd indicesF2k−1 has been noticed a long time ago. See [14].
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The same method allows a calculation of the mean-square deviation of the length of
animals with areak. The generating function

C(z) =
∞∑
k=1

Ckz
k Ck =

∑
l

l(l − 1)

(
k − l
l − 1

)
(2.14)

is given by the second derivative ofF(z, t) at t = 1,

C(z) = ∂2F(z, t)

∂t2

∣∣∣∣
t=1

= 2zF 2(z) + 2z2F 3(z). (2.15)

The coefficients of the seriesF 3(z)are needed to obtainCk. They are calculated in the appendix
with the following result:

F 3(z) =
∞∑
k=3

F
(3)
k zk F

(3)
k =

(k + 1)(k + 2)

10
Fk − 3

5
F
(2)
k+1. (2.16)

Thus we have

Ck = 2F (2)k−1 + 2F (3)k−2 = 4

[
2(k − 1)Fk − kFk−1

25

]
+
k(k − 1)

5
Fk−2 (2.17)

and, using (2.12),

l2(k) = Ck +Ak
Fk

= 1

25

[
5k2

(
1− Fk−1

Fk

)
+ k

(
13− 4

Fk−1

Fk

)
+ 7

]
. (2.18)

The mean-square deviation1l2(k) = l2(k)− l2(k) follows from (2.13) and (2.18).

2.3. Mean height

The mean height of an animal with areak living on l stairs is taken as the ratiok/l, i.e. it is
measured from the staircase. Thus the mean height of animals with areak is given by

h(k) =
∑∞

l=1 kl
−1Fk,l∑

l Fk,l
= Bk

Fk
Bk =

∑
l

k

l

(
k − l
l − 1

)
. (2.19)

The absorption/extraction identity can be used to write(
k − l + 1

l

)
= k − l + 1

l

(
k − l
l − 1

)
= k + 1

l

(
k − l
l − 1

)
−
(
k − l
l − 1

)
l > 1 (2.20)

from which we deduce:
k

l

(
k − l
l − 1

)
= k

k + 1

[(
k − l + 1

l

)
+

(
k − l
l − 1

)]
l > 1. (2.21)

Inserting (2.21) into the definition ofBk in (2.19), we obtain

Bk = k

k + 1

[∑
l>1

(
k − l + 1

l

)
+
∑
l

(
k − l
l − 1

)]
= k

k + 1

[∑
l

(
k − l + 1

l

)
− 1 +

∑
l

(
k − l
l − 1

)]
(2.22)

where the last equation follows from adding and substracting the terml = 0 in the first sum.
According to the combinatorial definition of the Fibonacci numbers in (2.7) we have

Bk = k

k + 1
(Fk+2 + Fk − 1) (2.23)

and finally

h(k) = k

k + 1

(
Fk+2

Fk
+ 1− 1

Fk

)
. (2.24)
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2.4. Asymptotic behaviour

The generating function of the Fibonacci numbers in (2.8) can be written as the partial fraction
expansion

F(z) = 1√
5

(
1

1− φz −
1

1− φ̂z

)
φ = 1 +

√
5

2
φ̂ = 1−√5

2
(2.25)

whereφ ≈ 1.618 03 is thegolden ratioandφ̂ = 1−φ. Thus the Fibonacci numbers are given
by

Fk = 1√
5
(φk − φ̂k). (2.26)

Generally the number of animals with sizek behaves at large size asCk−θλk, whereC is a
constant amplitude,λ is the inverse of the critical fugacityzc andθ is the exponent governing the
critical behaviour of the generating functionG(z, 1) ∼ (zc−z)θ−1 whenz→ zc−. From (2.7)
and (2.26) we deduce the critical parameters:

θ = 0 λ = z−1
c = φ. (2.27)

According to equations (2.13) and (2.26), the mean length behaves asymptotically as

l(k) = 2 + φ̂

5
k + O(1) = 5−√5

10
k + O(1). (2.28)

For the mean-square length we have

l2(k) = 1 + φ̂

5
k2 +

13 + 4φ̂

25
k + O(1) (2.29)

whereas

l(k)2 = (2 + φ̂)2

25
k2 +

6(2 + φ̂)

25
k + O(1). (2.30)

It is easy to verify that the leading O(k2) contributions in (2.29) and (2.30) are the same. Thus,
the mean-square deviation is O(k) and given by

1l2(k) = k

5
√

5
+ O(1). (2.31)

The behaviour of the mean height follows from equations (2.24) and (2.26). It tends to a
constant value:

h(k) = 1 +φ2 + O(k−1) = 5 +
√

5

2
+ O(k−1). (2.32)

3. Double staircase

Next we consider column-convex animals on a double staircase as shown in figure 2. The
connectivity rules for neighbouring columns are the same as above for a single staircase and
we count the different stackings with at least one square on the lowest central stair.
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Figure 2. Different stackings of five squares on a double staircase arranged by number of occupied
stairs.

3.1. Number of animals

The generating function for the numberGk,l of animals with areak living on l successive stairs,

G(z, t) =
∞∑

k,l=1

Gk,lz
kt l (3.1)

can be expressed using the generating function for animals in a single staircase in equation (2.3)
as

G(z, t) = zt + t
z2

1− z [1 + F(z, t)]2. (3.2)

The first term corresponds to a single square on the central stair. When there are two or more
squares on the central stair (first factor in the second term) the animal may either stop or
continue to grow on one or two staircases (second factor in the second term). Using (2.2), the
generating function may be rewritten as

G(z, t) = zt + [1 +F(z, t)][F(z, t)− zt ] = (1− zt)F (z, t) + F 2(z, t). (3.3)

Accordingly, we have

Gk,l = [zkt l ]F(z, t)− [zk−1t l−1]F(z, t) + [zkt l ]F 2(z, t)

=
(
k − l
l − 1

)
−
(
k − l
l − 2

)
+
∑
p,q

(
p − q
q − 1

)(
k − p − l + q

l − q − 1

)
. (3.4)

Using the relation [13, p 169]∑
p

(
p − q
q − 1

)(
k − l − p + q

l − q − 1

)
=
(
k − l + 1

l − 1

)
(3.5)

the double sum in (3.4) can be reduced to
l−1∑
q=1

∑
p

(
p − q
q − 1

)(
k − p − l + q

l − q − 1

)
=

l−1∑
q=1

(
k − l + 1

l − 1

)
= (l − 1)

(
k − l + 1

l − 1

)
(3.6)

yielding

Gk,l =
(
k − l
l − 1

)
−
(
k − l
l − 2

)
+ (l − 1)

(
k − l + 1

l − 1

)
= l
(
k − l + 1

l − 1

)
− 2

(
k − l
l − 2

)
(3.7)

where the last expression follows from the addition/induction relation (2.5).
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The total number of animals with areak reads as

Gk =
∑
l

Gk,l =
∑
l

l

(
k − l + 1

l − 1

)
− 2

∑
l

(
k − l
l − 2

)
. (3.8)

According to (2.9), the first term is equal toAk+1, whereas the second follows from (2.7).
Using the expression ofAk in (2.12) and the recursion on the Fibonacci numbers, we obtain

Gk = Ak+1− 2Fk−1 = k(Fk + 2Fk−1) + 4Fk − 5Fk−1

5
. (3.9)

3.2. Mean length

As above, the mean length of animals with areak is defined as

l(k) =
∑∞

l=1 lGk,l∑∞
l=1Gk,l

= Ak
Gk

Ak =
∑
l

l2
(
k − l + 1

l − 1

)
− 2

∑
l

l

(
k − l
l − 2

)
. (3.10)

TheAks are the coefficients of the generating function

A(z) =
∞∑
k=1

Akzk = ∂G(z, t)

∂t

∣∣∣∣
t=1

= −zF (z) + (1− z)A(z) + 2F(z)A(z)

= −zF (z) +
(1− z)2

z
F 2(z) + 2

1− z
z

F 3(z) (3.11)

which follows from (3.3), taking into account the expression ofA(z) given in (2.10).
Thus, according to (3.11), (2.11) and (2.16), we have

Ak = [zk]A(z) = −Fk−1 + F (2)k−1− 2F (2)k + F (2)k+1 + 2(F (3)k+1− F (3)k )

= 5k2Fk−1 + k(19Fk − 7Fk−1) + 6Fk − 25Fk−1

25
. (3.12)

The mean length follows from equations (3.9), (3.10) and (3.12):

l(k) = 1

5

5k2Fk−1 + k(19Fk − 7Fk−1) + 6Fk − 25Fk−1

k(Fk + 2Fk−1) + 4Fk − 5Fk−1
. (3.13)

The mean-square deviation can be determined, proceeding as above for the single staircase. It
involves a lengthy calculation of the generating functionF 4(z), which can be obtained in the
same way asF 3(z) in the appendix. The asymptotic behaviour is the same as for the single
staircase as shown in the discussion.

3.3. Mean height

The mean height, measured from the staircase, takes the form

h(k) =
∑∞

k=1 kl
−1Gk,l∑∞

k=1Gk,l

= Bk
Gk

Bk = k
∑
l

(
k − l + 1

l − 1

)
− 2

∑
l

k

l

(
k − l
l − 2

)
. (3.14)

According to (2.7), the first sum is equal toFk+1. Using (2.5) and (2.19), the second sum can
be rewritten as∑
l

k

l

(
k − l
l − 2

)
=
∑
l

k

l

(
k − l + 1

l − 1

)
−
∑
l

k

l

(
k − l
l − 1

)
= k

k + 1
Bk+1− Bk. (3.15)
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Collecting these results and taking (2.23) into account, we obtain

Bk = kFk+1 +
2k

k + 1
(Fk+1 + 2Fk − 1)− 2k

k + 2
(3Fk+1 + Fk − 1)

= k

(k + 1)(k + 2)
[k(k − 1)Fk+1 + 2(k + 3)Fk − 2]. (3.16)

Finally, the mean height follows from (3.9) and (3.16) and reads

h(k) = 5k

(k + 1)(k + 2)

k2(Fk + Fk−1) + k(Fk − Fk−1) + 6Fk−2

k(Fk + 2Fk−1) + 4Fk − 5Fk−1
. (3.17)

3.4. Asymptotic behaviour

According to (3.9) and (2.26), the asymptotic number of animals with areak on a double
staircase is such that

θ = −1 λ = φ. (3.18)

From (3.13) we deduce that

l(k) = k

2 +φ
+ O(1) = 5−√5

10
k + O(1) (3.19)

whereas (3.17) leads to

h(k) = 5
1 +φ

2 +φ
+ O(k−1) = 5 +

√
5

2
+ O(k−1). (3.20)

4. Discussion

The behaviour of the number of animalsFk,l as a function ofl for k � 1 can be obtained by
expandind lnFk,l to second order near its maximum using the Stirling approximation. This
leads to a Gaussian distribution:

Fk,l ' 51/4φk√
2πk

exp

[
(l − l(k))2
21l2(k)

]
. (4.1)

Here l(k) and 1l2(k) are the leading contributions to the mean length and the mean-
square deviation as given in (2.28) and (2.31), respectively. The prefactor follows from the
normalization toFk ' φk/

√
5.

The same behaviour is obtained in the double staircase for which, according to (3.7),
Gk,l ' lFk,l ' l(k)Fk,l . Only the normalization differs since, according to (3.9),Gk '
k(Fk + 2Fk−1)/5' kφk/5. Hence we have

Gk,l '
√

k

2π
√

5
φk exp

[
(l − l(k))2
21l2(k)

]
. (4.2)

Thus, to leading order,l(k) and1l2(k) are the same for both problems. Furthermore,
the Gaussian distribution leads toh(k) = k1/l(k) ' k/l(k) and we obtain the relation
h(k)l(k) = k, valid to leading order too. These conclusions are in agreement with the exact
results obtained in sections 2.4 and 3.4.

The animals are strongly anisotropic. Their length, measured along the staircase, scales
asl(k) ∼ kν‖ and their transverse size ash(k) ∼ kν with ν‖ = νz = 1 andν = 0. Thus the
anisotropy exponentz is infinite.

In this paper we have studied column-convex animals in staircases with steps of unit
height. The problem can be generalized by considering staircases with steps of constant
arbitrary height. Then Fibonacci numbers are replaced by generalized Fibonacci numbers.
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Appendix. Calculation of the coefficients ofF 3(z)

Starting from the partial fraction expansion forF(z) in (2.25) we have

F 3(z) = 1

5
√

5

(
1

1− φz −
1

1− φ̂z

)3

= 1

5
√

5

[
1

(1− φz)3 −
1

(1− φ̂z)3 −
3

(1− φz)(1− φ̂z)

(
1

1− φz −
1

1− φ̂z

)]
. (A.1)

Making use of the series expansion

1

(1− x)3 =
∑
k

(
k + 2

k

)
xk = 1

2

∞∑
k=0

(k + 1)(k + 2)xk (A.2)

with x = φz andx = φ̂z in the two first terms and, in the third, taking into account the relation

(1− φz)(1− φ̂z) = 1− z− z2 (A.3)

which follows from the expressions ofφ andφ̂ in (2.25), we have

F 3(z) = 1

5
√

5

[
1

2

∞∑
k=0

(k + 1)(k + 2)(φk − φ̂k)zk − 3
√

5
F 2(z)

z

]
. (A.4)

Furthermore, since

φk − φ̂k = [zk]

(
1

1− φz −
1

1− φ̂z

)
=
√

5Fk (A.5)

we can rewrite (A.4) as

F 3(z) =
∞∑
k=1

(k + 1)(k + 2)

10
Fkz

k − 3

5

F 2(z)

z
. (A.6)

Thus, the coefficients of the series are given by

F
(3)
k =

(k + 1)(k + 2)

10
Fk − 3

5
[zk]

F 2(z)

z

= (k + 1)(k + 2)

10
Fk − 3

5
F
(2)
k+1. (A.7)

Using (2.11), it is easy to verify thatF (3)1 = F (3)2 = 0 andF (3)3 = 1 as expected since the series
expansion ofF(z) starts withz.
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